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FOREWORD

This report presents a simple prescription for generating the appropriate contour integrals
describing the Green’s function for propagation in a waveguide. It then proceeds to describe
methods by which these contour integrals can be evaluated in terms of sums over normal modes
and branch cut integrals. Examples for the one- and two-layered waveguide are developed in
detail.
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INTRODUCTION

This report presents a simple prescription for generating the appropriate contour integrals
describing the Green's function for propagation in a waveguide. It also describes a method by
which these contour integrals can be evaluated in terms of sums over normal modes and branch
cut integrals.

INTEGRAL REPRESENTATIONS AND MULTIPATHS

The first assumption is that the source is a harmonic point source with a time dependence
of the form e™*. Second, the Green function for a point source in free space is given by the
expression

G(r,”') = e*r"\janlr— 7| (1)
which can be represented in the form

Gr,r')y = i3 [~ dn.HY (q.p).e= = ifgm. [0 42 F(D(g.p).e*l:~! 2)
in terms of the cylindrical functions appropriate for a waveguide. Here, q is the horizontal

wavenumber and h is the vertical wavenumber of the field. The conventions of Ewing, Jardetsky
and Press for the branch cut of

hg) =i Jq* k2 (3)

is chosen such that the imaginary part of h is positive on the physical sheet. For real frequencies,
the branch cut consists of a cut from +k to the origin to +ie. The cut for negative frequencies is
obtained by the making the transformation h — —h along the cut. The z-axis is oriented towards
the bottom of the waveguide. This convention affects the signs in the exponential of the
cylindrical form of the Green function.

Using Eqn 3 for the Green function one can obtain an integral representation of the Green
function in a waveguide. Consider a source and receiver in a homogenous layer, where U and V

are the total reflection coefficients of the upper and lower boundaries of this layer. Then the
Green function for the wave guide may be expressed in the form

Gu(r,r') = i8n[*= 2 H(q.p).F(z,2') 4)

where the function F(z,z') is given by the following multiple scattering summation of multipaths.
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F(z, Z’) = 2;0( eih(z—z') +U. e-—ih(Za—z—z’) +V. eih(Zb—z—z’) +UV. e2ihd—ih.(z—z’))_( Uv. eZihd)n (5)

This summation consists of the contributions due to the direct path, a surface bounce, a bottom
bounce, and a bottom bounce followed by a surface bounce and all multiple bounces. Here, a is
the z coordinate of the upper surface and b is the z coordinate of the lower surfaceandd=b - a is
the depth of the layer. In deriving the above expression it was assumed that z > z'. The
expression for z < z' is obtained by switching z and z' in the above expression.

Eqn 5 can be further simplified in the form
F(z, Z/) — (e-ihz’ + U.e+ihz’)(eihz + Ve+2ihd.e—ihz)/(1 _ UVe2ihd) (6)

appropriate for a contour integral, where z > z'. The case of z <z'is represented by switching z
and 7' in the above expression.

The contour integral representation of the waveguide's Green function is given by the
following expression.

Gulr,r') = il8T. |2 42 H(D(gp).(e7< + U.e*i<)(e*!e> + V.2 e7h) (1 - U.V.e*M) (7)

Consider the generalization where the source and the receiver are in different layers. Let
the source z' be in layer 1, where a' and b' are the z coordinates of the upper and lower surfaces.
Let the receiver z be in layer 2, where a and b are the z coordinates of the upper and lower
surfaces of this layer. Then using the multipath expansion of the waveguide one can express the
Green function for the waveguide in the following form,

Gulr,r’) = if8m. |22 22 Hy (gp).F1(@). Wi2 F2(2) ®

where W) is the total transmission coefficient between layer 1 to layer 2. Assuming

2> 7', the function F;(z’) is obtained by summing all multipaths which strike the interface b'. The
function F»(z) is obtained by summing all multipaths from the upper surface a to the receiver at z.
In the case z > Z', these functions are given by the following expressions.

Fi(@) = (€M@ 4 Uy .etd gmm®-D)/(1 ~ Uy.vy.e2hd) | )
Fa(2) = (€@ 4 V, g2tz g haea) /(] — U, V5. e2h2%2) (10)

In the above expression U, is the total reflection coefficients at a' of all the layers above a', v is
the surface reflection coefficient at b' as if the layer below b’ were a homogeneous halfspace, U s
the total reflection coefficient at a of all the layers above a, and V; is the total reflection
coefficient at b of all the layers below b. Note the use of the vertical wavenumber in layer 1 in the
function F(2’), and the use of the vertical wavenumber in layer 2 in the function F2(z).
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In the case z < z|, the function F(z’) is the sum of all multipaths from the source to the
upper interface at a', and the function F,(z) is the sum of all multipaths from the lower interface at
b to the receiver. In this case, these functions are given by the following expressions,

Fi(Z) = (e7M@-) 4, g2ihidi gtihi@-)y/(] —yy, V) g2imd1) (11
FZ(Z) = (e—ihz(z—b) + Uz.eZihzdz'e+ih2(z—b))/(1 -U, V2.€2ih2d2) (12)

where u, is the surface reflection coefficient at a' as if the layer above a' were a homogeneous
halfspace, and V; is the total reflection coefficient at b’ of all the layers below b'.

Note, this form of the integral representation is only valid in the case both the source and
the field point are in fluid layers. However, the intervening layers may be elastic or Biot models,
since this form of the integral representation needs only the reflection and transmission coefficient
of these intervening layers. An integral representation for an elastic or Biot waveguide would
require use of the propagator matrix formalism to represent the field.

NORMAL MODES

This section describes the normal mode representation one can obtain from the previous
integral representations of the Green function by representing these contour integrals in terms of a
sum of residues from poles and branch cut integrals. For the sake of simplicity, only the case
where both the source and the receiver are in the same layer is treated.

The Green function for a source and receiver in the same layer is given by the following
contour integral representations in the complex h-plane.

Gu(r,r) = i8m. [~ dh.Hy (gp).(e77< + U.e*hc) (¥ + V.e¥hd g=he>)/(1 — UV.e2) (13)
This integral may be represented by the contour integral in the g-plane as
Gu(r, V) = il8m.[~_qdq/h.HY (gp).(e7"= + U.e*h<)(e*he> + V.e*2hd e=ihe>) /(1 = UVe? ) (14)

In general the poles of the integrand lie on or near the branch cuts. In general, this contour
integral may be represented as a sum of pole contributions and a cut contributions. The cut
contributions occur when the integrand is not an even function of h. Inthecase U=-1and V =
+1 for a pressure release surface and a rigid bottom, the integrand is an even function of h, hence
the cut contribution is zero. In the case U and V have the symmetry U(-h) = U(h)" and V(-h) =
V(h)', the integrand is an even function of h and its branch cut contribution vanishes. In general,
the cut contribution due to any bounded layer is zero. Cut contributions generally occur when
you have an unbounded region at the ends of the waveguide.

The branch cut for g = yk* — h? in the complex h-plane is chosen such that Im(q) >0 in
the complex h-plane. The above contour can be completed by adding the contour at infinity in the
upper half plane, since the integrand is exponential damped along the added contour. In addition

3
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to the branch cut for g, there exists branch cuts for the vertical wavenumber in the other layers,
and if there exists an unbounded region in the waveguide there will be a cut contribution to the
above integrand in addition to the pole contributions.

The poles of the above integrand correspond to the complex solutions of the equation.

(1-UV.e2hdy =0 (15)

The pole contributions to the above integrand are of the form

THY (@p).(e7M + U.e*ihe) (emhe 4 . g*ihe)/( 1. A7) (16)
where
A= %(1 = UVe¥hdy = _2j (d+ %.Ulv.g’;(uw) (17)

The normal mode representation of the Green function is simply the sum over all the
residues from the poles and cut contributions in the upper half g-plane.

HOMOGENEOUS WAVEGUIDE WITH A RIGID BOTTOM

This section derives the Green's function for a homogeneous waveguide with a pressure
release surface and a rigid bottom. The reflection coefficients U and V are given by the
expressions U =-1 and V = +1. Substituting these values into Eq. 16 for the pole contributions to
the Green function the following expression is obtained,

—i/Zd.Hg)(qp).(e*""z' _ e—ihz’)(e+ihz _ e—z’hz)

which may be represented in the form

if4.Hy (gp)f(2') f(z) (18)
where
fizy= 2 sin(hz) (19)

are the normalized depth function of the waveguide.
The characteristic equation for the waveguide takes the form
(1+e%hd)y =0 (20)

whose solutions are given by the expression
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h=mn-1/2)*n/d (21)

forn=1,2...

TWO LAYERED WAVEGUIDE WITH RIGID BOTTOM

This section applies the previous sections in the case the waveguide consists of 2 fluid
layers, where the top layer has a pressure release surface and the bottom layer has a rigid bottom.
In this case the reflection coefficients at the surface and bottom are given by the expressions.
Ui=u =-1 (22)
Vy=v, =+1 » (23)

The reflection coefficients at the interface of these 2 layers is more complicated. Note that the
surface reflection coefficients at-this interface are given by the expressions,

vy =(m.hy —hy)/(m.hy + hy) (24)
P (25)

where m is the ratio of the density in layer 2 and the density in layer 1. The total reflection
coefficients at this interface are given by the expressions

Vi = (vi + Va.e?2da)[(1 + v, Vy.et2md2) = (v + e*¥had2) /(] + v e*2h2%2) (26)
Uz = (uz + Ur.e?M)/(1 +up Uy .e*2mdt) = (<y, — e2hdn)/(1 + v, e*2ithdr) @7)

In the case both the source and receiver are in the upper layer (layer 1), the Green function
is given by the following contour integral.

Gw(r, r/) = i/87 L*’: Q,;‘_{lfl_(e-ih,z/ _ e+ih12’)(e+ih12 + V1 _e+2ih[d1 .e'ihlz)/(l + Vl .e+2ih1'd,) (28)

The normal mode (pole) contribution to this integral is given by the expression,

—1/4-'A]_/~H§)1)(qp)'(e+ih12/ — e—ihlz,)(e-ﬂ'hlz — e—ih,z) (29)
where
A ==2i(d; + v%-‘ai—,(V‘)) (30)

and the normal modes (poles) are solutions of the following equation.
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A=(14V,.e*?ndiy=( 31

Multiplying the characteristic equation by (mh) +hy)(1 + v.e*2#22) g=ihidi g=ihads opa can
express the poles (normal modes) as solutions of the equation.
Y= 2.(mh1 - hz)COS(h;dl - h2d2) + 2.(mh1 + hz) * COS(h1d1 + hzdz) (32)
Note, this function is a real odd function of the vertical wavenumber in both the first and second
layer, which implies that if &, = . is a solution of this equation, then—a, 0%, —0* are also
solutions of the characteristic equation. The roots to this equation are real for real wavenumbers
k1,k2. Hence the roots lie along the branch cuts for the vertical wavenumber.

In order to compute the derivative of the characteristic equation define the quantity
v =ki-k3 (33)
The vertical wavenumber in the second layer maybe rewritten in the form
hy = [h} —72 (34)

in terms of the wavenumber in the first layer. The derivative of the characteristic equation
evaluated at a solution of the characteristic equation is given by the expression.

A ==2id, - h—2{2id2.h1,((mh1 +ha)+(mhy = hy).e?MN) 4 ((mhy + hy) + (mhy — hy).e*2h2d)

+H((mha —h1) + (mha + hy).e¥272%2) ¥ 2Md Y (mhy + hy) + (mhy — hy).e*2ihad2) (35)

In the homogeneous limit, m=1, h, = h, = h, the characteristic equation and its derivative are
given by the expressions

A= (1 +e+2ih(d1+d2)) =0 (36)
and
A/ =-2i.(d; +d>) 37)

appropriate for a homogeneous waveguide with a rigid bottom.
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In the case the source z' is in the top layer, and the field point z is in the bottom layer, the

Green function is given by the following expression,
Gulr,r') = if8m. |2 S2HG (qp).F1(2/)- Wiz Fa(2)

where

Wi=({1+v))

is the transmission coefficient between layers 1 and 2, and
F, (Z/) = (e-f-ihl(zg-z’) — pt2ilyd, 'e—ihl(zz-z’))/(l +v _e+2ih1.d])
and

Fa(2) = (e*h2e=22) 4 g#2ihady gmiha2)))(] — U, e*2hada),

Here, 71 = 0,722 =+d, z3 = (d; +d») are the z coordinates of the three interfaces of the
waveguide. By making use of the identity,

(14 v).e™2mdr) (1 - Uy.et?hd2) = (1 +vy.e*?h2d2) (1 + V). et?mdr)

the expression for the Green function can be expressed
in the following form.

Gu(r,r) ==172m. [7_ 22 H (gp)-{(1+v1)/(1 +vy e 2z} griidrtibada/

sin(h;2’). cos(hz(z~d1 —d>))

The normal modes are solutions of the characteristic equation
A=(1+V5e?hdy=0

and the pole contribution to this integral is of the form.

(HIAY.({(1 + v )1 +vy.e*2ikd2)} grimiditinds (D (0 sin(h17’). cos(ha(z—d1 —da))
This solution can be recast into the form

i14.H (gp) £1@').f2(2)

where f1(z) and f,(z) are the functions

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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f1(z) = J—4i/A . sin(h,z) 47)
and
F2@) = [ (L4 v1)(1 vy e¥2hads)} ghindisind: cos(hy (z-dy - da)). (48)

Similarly, the solution in the case both the source and field point are contained within layer 1 can
be recast into the form.

i14.H3 (gp) f1 ') f1(2) (49)

In the homogeneous limit, m =1, h; = hy = h, the depth functions are equal to the
following expression,

1@ =@ = g5 -sin(h) (50)
appropriate for a homogeneous waveguide.
FLUID LAYER OVER A HOMOGENEOUS HALFSPACE

This section will describe the Green's function for a fluid layer over a fluid halfspace. In
this case, the reflection coefficients are

Ui=u =-1 (51)
Vi =vi = (mh; —hy)/(mhy + hy) (52)
Uy =—v, (53)
Uz =—(v1 +et?Mdn)/(1 + v, .e?dr) (54)
Va=vy=0 (55)

where the conventions of the previous section have been adopted.

In the case z > z', and the source and the receiver are contained within layer 1, the Green's
function is given by the contour integral.

G(r, ') = if8m. |2 2 H(gp).(ehi¥ — e*ihid ) (e*hiz 4 vy ¥ gty (] 4+ vy e¥ihidr)  (56)

8
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The normal modes are solutions of the characteristic equation,
A=(1+v.e?mdy=0 (57)
which can be recast into the form.
A= ((mh) +hy)+ (mhy = hy).e??191)(mhy + hy) = C (58)

The normal mode contribution to this contour integral is given by the residue

L.H((gp). sin(h12’). sin(h12), (59)
where
A ==2id, ~Vl,a,i”(v,) = —2id, —-hl—z.{(mhz —h))/(mhi +ha) — (mhy + k1) /(mhy +h2)} (60)

is the derivative of the characteristic equation evaluated at the pole.

The integrand is an even function of #,, but it is not an even function of &»
This leads to a discontinuity across the h, cut in the complex g-plane, which leads to a branch cut
contribution to the above contour integral, in addition to the pole contributions. This branch cut
contribution is due to the evanescent fields generated by the halfspace, and it is of the form,
[ ha.dhy (F(+hy,+h2) — F(=hy, — h2)) (61)
along the branch cut of 2, and F(h; h,) is the function.
F(hi,hy) = (i/87t)711—1Hf)1)(qp).(e“’”Z' —gtim?)(gtihiz  y g*2ihids gmihiz)[(] 4y g*2ihidr) (62)
Making use of the identities,
vi(=ha) =+1/vi(+h3) (63)
v,(—h1)=+1/v1(+h1) . (64)
this contour integral can be written in the form.

—if2m. J;w dh; .halhy Hg)(qp) sin(hlz’). sm(hlz).(v% - D)/((vy + e‘z"hldl)(v1 +e+2ih1d1))

= +il2m. [17 dhy HY (gp). sin(h12’). sin(hiz).m.h3/((mhycos(hidr))? + (ha. sin(h1d1))?) (65)
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The integrand is an even function of #; and h;.

Assuming k;p >>1 and using the relationship

g=+iJh2 -2 (66)

the integrand is exponentially damped for s, greater than k, due to the exponential behavior of
the Hankel function for large arguments. In this case, the chief contribution to the integrand
comes from the oscillatory portion of the integrand from h; =0 to k;.

Assuming k,p >> 1 , the branch line integral can be re-expressed in the form,
™ h3.dhy.e*P F(hy) — 1 T(3/2).(2ky/p) ¥2 e tikep-i3m4 Fp, = () (67)
0 2 p

where the asymptotic expansion ( Eq. 68 ) has been used

Hf)])(qp) - ’ﬂ_czfﬁ e tiap-in/4 (68)
for the Hankel functions, and the method of steepest descent to evaluate integrals of the form
77 x™.dx.e*™ F(x) — T((n+ 1)/2).1f" (xo)/2] -2 grifxasine s py 0 (69)

where x is the saddle point satisfying the equation, f(xo) = 0. The asymptotic expression for the
branch line integral is given by the expression,

—i.ka/(21tm).e**2P [(yp)2. sin(yz’). sin(yz)/ cos(yd;)? (70)
where ¥ = ,/k% —k3 . Note in particular, that the asymptotic form of the branch line integral falls
off as p~2, whereas the asymptotic form of the normal mode contributions fall off as p~'2. Thus,

the branch line integral is negligible at far ranges, where the normal mode terms dominate.

Let us next consider the case the source is in layer 1 and the field point is in layer 2. In
this case, the Green's function is given by the expression

ingn. [ %.Hg”(qp).(e-fhxz’ — etin?) grihad)) (] 4y)) et Mid/(] 4y e 2md), (71)
The normal mode contribution to this integral is of the form

—il2m.(1 + vy ).etmd /A’ H (gp). sin(hy (2).evHa@dn | (72)

10
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The branch cut integral is of the form
121 [1 hadhaylhy HY (gp). sin(h12’)(1+v1).{v1.sin(ha(z — di) = hyd)) + sin(ha(z = d1) + hidi)}
emdiT(] 4y e*imdr) (y, +e*2imdiyy, (73)
This can be rewritten in the form
121 [37 ha.dhy HS (gp). sin(h12').{mh, . sin(ha(z— d1)). cos(hrd)) + hacos(ha(z—d1))sin(h1d1)}

m/{(mhycos(hdy))? + (hysin(hidy))?)}. (74)

This integral is of the form
J§7 h3.dhy.e* F(hy) (75)
where

F(hy) =il2m. |2 .e7™* m.sin(h,2’).{mh,/h;.sin(hy(z — d1)). cos(hid )+

Tqp -
cos(ha.(z—d1)). sin(hidy) Y{(mhicos(hidy))* + (hasin(hid1))?)} (76)

An asymptotic expression for this branch cut integral may be obtained as in the previous case.
The resulting asymptotic expression is of the form

—i.ka/(2m.m).e P [(yp)?. sin(yz/){sin(yd) ) + mY.(z— d1). cos(yd1) } cos(yd1 ). (77)

Note, this term changes linearly with respect to the depth of the field point.

11
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